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The probability for small molecules to travel between two points in space under diffusion and stirring in 
a time t is determined and used to find the amount of mass transferred from a polymer matrix into solution. 
Both diffusion and stirring govern the behaviour of the migrants; diffusion depends on the mean value of 
the diffusion coefficient and stirring forces the particles to move in a specific manner. The results of g.c. 
experiments, measuring the number of dioctylphthalate plasticizer molecules diffusing from the matrix of 
a poly(vinyl chloride) film into an oil solvent, with and without stirring, confirm the theoretical relationships. 
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INTRODUCTION forced Rayleigh scattering or laser beams 16-19. Gas 

The description of the diffusion of low molecular weight chromatographic analysis s-l° of properly derivatized 
samples also provides a high degree of precision in the 

species in a matrix is of fundamental importance due to measurement of the quantities of diffusants transferred 
its numerous applications. The diffusion of charged into specific regions, such as of a solution in contact with 
particles due to a hopping motion in various materials a solid matrix. Theoretical efforts to describe phenomena 
is a first example of the capability of the phenomenon related to the diffusion of the migrants in a polymer 
to describe the conductivity and other macroscopic 
properties of these substances TM. The same phenomenon matrix include free volume theories ~s-22, according to 
also finds application in the field of drugs and other which the diffusing penetrant molecules advance through 

the available free volume of the matrix with various 
bioactive products 5 7, since these species must be released degrees of difficulty. Monte Carlo 5 simulations and 
at a controlled rate usually from a polymer matrix in analytical solutions based on Smolocouwki's 23 and 
which they are initially dispersed. A third field where Fick's 24'25 diffusion equations have also been employed. 
the diffusion of molecules is important is in the The diffusion of low molecular weight compounds can 
construction of polymeric containers for foodstuffs, and 
pharmaceutical and medicinal products. Additives, such also be described by means of random walks and from 

this point of view the trajectory of a diffusing particle is 
as plasticizers, stabilizers, antioxidants and lubricants, like the configuration of a polymer chain, the length of 
used to improve the mechanical, chemical and physical 
properties of the packaging materials may diffuse from which plays the role of time 26-2s. In this way, a polymer 
the plastic into the solid or liquid contacting media and matrix consisting of polymer chains can be studied. The 
contaminate them 8-13. Another important reason for the trajectory path of the diffusing particle is then like a 
study of the macroscopic behaviour of the diffusants is fictitious chain in the presence of other real chains. Special 
that it is strongly related to the state of the matrix in interactions may be included in this sense between the 
which they diffuse and analytical monitoring of the chains which amend the description of the phenomenon 
diffusion may be employed for the study of the beyond that of free diffusion. In more concentrated 
matrix itself 14'~5. The description of both static and systems of migrants, interactions between them may also 
dynamic macroscopic behaviour of polymer matrices can be incorporated 29'3°. 
be pursued in this way and changes of behaviour In this paper we study the diffusion of migrants giving 
have been detected by means of measuring diffusion the solution of the initial free diffusion problem in terms 
coefficients~6,17, of the probability of migration of a diffusant between 

two points in space. In this solution many effects can be 
Both experimental and theoretical methods have been incorporated like those from specific interactions or 

employed to study the diffusion of migrants through 
polymer matrices. The experimental methods used confinement of the motion of the diffusants. An example 
include holographic grating techniques which use the of the capability of incorporation of further effects is given 
monitoring of the signals from the diffusants induced by by studying in detail the effects from stirring 3~ which 

causes an extra organized motion of the diffusants. A 
comparison of theoretical with experimental results is 
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THE PROPAGATOR migrants will be like fictitious polymer chains where the 
molecular weight proportional to the length of the chain 

The diffusion of particles in a matrix can be studied by is equivalent to time. 
means of the differential equation (Fick's second law): Equation (3) describes an initial problem. Other effects 

_ _ _  like those resulting from specific interactions between the 
OC DV2C=0 (1) migrants and the matrix or the confinement in specific 
~t geometries can be incorporated. We present here an 

which describes the concentration C(R, t) of the particles example of the incorporation of organized motion by 
at any point R and time t in terms 24'25 of an effective means of stirring. The particles beyond their free diffusion 
diffusion coefficient D. In order for C(R, t) to describe are also forced to move by mass flow in a certain manner 
specific systems proper boundary conditions have to be and direction. If the particles are moving with an extra 
applied to the general solution of the differential equation, average velocity u towards the positive z direction only 
It is known for example that the solution which describes the z component of P will be affected and those of the 
free diffusion of mass M of particles which are gathered free diffusion along the x and y directions will remain 
initially at the point R 0 =0  is given by: the same. A term equal to the product of the velocity u 

M and the gradient OP/Oz along the this direction has to be 
C(R, t)-8(~Dt)3/~ exp(-RZ/4Dt) (2) included35 38 and the solution of the three-dimensional 

problem including stirring is equivalent to the solution 
More difficult examples describe the diffusion in specific of the differential equation: 
geometries or under specific interactions and most of the ,gP DVzgP-u OP 6(Ro-R)6(t) 
time cumbersome boundary conditions are difficult to = (5) 
apply24,25,32-34. Ot Oz 

For the description of some systems it is more P is a function of the components of the vector R o - R  
convenient to use a correlated quantity, namely, the and the solution of equation (5) will describe the diffusion 
probability P(R o, R; t) of a particle starting from the point of particles under stirring. It can easily be solved in the 
R o to be at the point R in time t, which obeys a similar combined Fourier and Laplace spaces as far as the space 
differential equation 16 28: and time variables are concerned, respectively. Defining: 

fo OP DvZP = 6(R -- Ro)6(t ) (3) P(k, s) dR exp[-  i (R-  Ro)k] dt exp(- st)P(R- Ro; t) 
Ot 

The Dirac delta functions 6(R-Ro)  and 6(t) of equation (6) 
(3) vanish everywhere except at R = R o  and t = 0  and as the combined Fourier and Laplace transform of P, 
specify R o to be the starting point of the motion. The equation (5) becomes (s + Dk 2 - uik=)P(k, s) = 1 which 
diffusion equation is separable along the three cartesian yields for P(k, s) the expression: 
axis and the propagator P is a product of three 
independent components along the three perpendicular P(k, s)= 1 (7) 
directions: s + Dk 2 -- uik= 

1 ~ (i-io)2] P can then be found from equation (7) by inverse Laplace 
P = PxPyPz where all P i -  ~ exp and Fourier transforms and equals: 

2x/~rDt L 4Dt J 
(i = x, y, z) (4) P -  l _ _  exp[~ (x - Xo) 2 + ( y -  yo) 2 + ( z -  z o -- ut)2~ 

8(TzDt) 3/2 L 4Dt d 
It is normalized with respect to integration over all space 
ensuring the fact that the migrants have to be somewhere (8) 
in space at any time. Having the form of P(Ro, R; t) New features dependent on the value of the velocity u 
problems like the evaluation of mass transfer at specific along the z direction change the z dependence of P from 
intervals of time from specific parts of space to other that of equation (4). It becomes a Gaussian moving in 
parts of space can at once be solved by integration of the z direction with velocity u. Knowing the form of P, 
P(Ro, R; t) for the time interval and the space variables quantities like the mean square displacement of the 
involved, respectively. The propagator P is of a migrants or the amount of mass transfer from a specific 
fundamental nature and can be employed for the detailed sample to the solution with stirring (u > 0) or without 
study of the motion of the diffusants by finding, for (u = 0 ) c a n  be determined. 
example, their mean displacements as a function of time 
or the frequency of visiting specific sites in the sample. 
Describing mass transfer by means of the probability P, THE AMOUNT OF MASS TRANSFERRED 
equation (4), has some advantages compared to the INTO SOLUTION 
solution of the initial differential equation for C(R, t) 
because the first avoids the cumbersome boundary An important quantity is the amount of mass transferred 
conditions necessary for the description of special systems into solution and can easily be determined by means of 
by means of the second method. P as the solution of accurate experimental methods like gas s-~° or liquid 39'4° 
equation (3) can also be expressed by means of path chromatography, mass spectrometry ~,  spectrophoto- 

4 2  4 3  4 4  integrals26 2s and it is of special interest when diffusion metry 41 or Raman spectroscopy and radioactivity ' 
takes place in a polymeric matrix since the real chains or radio trace analysis 45'46. We will determine this 
can also be described by path integrals, about which quantity in terms of D, u and t and the characteristics of 
many studies have been carried out. The trajectories of the sample. We consider that our solid matrix has a 
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width 2 adjusted along the negative z direction and a 
a perpendicular surface S at the z = 0  plane. The O = 5 . 6 5 x l O - I Z c m S s  -I 

migrating molecules which are initially uniformly spread o. z - 
throughout the whole matrix diffuse under stirring and 
a percentage of them go into solution in the positive x ~ z - - - ' - - ' ' ' - ~ ~  
subspace, z > 0. In order to find the amount  of mass M, o. 
of migrants which transfer into solution as a function of 
the time t we have to integrate Xo, Yo and Zo to cover all ~ ~ ~ x  ~ ~ t 
possible initial positions of the molecules in the matrix u/x=re3xtO-%-~ 
and x, y, z to cover their final positions lying everywhere . -  .. 
in the positive space where the solution is: o.~ 

fs f f°f f/;o M t = C' dxo dyo dzo dx dy dzP o. z 
- Z  

(9) o. 

where the x and y integrations are performed over the I J t 
total available surface of escape S and C' is a constant t z 3 
proportional to the total mass of migrants. If we divide by t x Io5(s) 
Moo the total mass of migrant which under stirring diffuses Figure 1 Least square fitting curves: (a) without stirring, equation 
finally ( t ~  oo) into the solution we can get rid of C' and (1 la); (b) with stirring, equation (10), at 6°C. The solid line corresponds 
obtain the expression: to u/),= 6.73 × 10-6 s-1, found by minimizing the sum of the squares 

of the differences between the experimental values of MJM~ and those 
Ut t / Ut \ Ut--,~ 1/) . -  Ut'~ of equation (10). The dotted line corresponds to u/2 =9.35 x 10 -6 s-1, 

MJMoo = - - e r f / ~ ]  4 e r f /  / found by minimizing the sum of the simple differences between the 
22  \2x/Dt/  22 \2x//~,l experimental values of M,/Mo~ and those of equation (10) 

+x/~{Sw/~ I ~ 1  [ (2-u t )2~  _ 
exp - - e x p  j3+~ a Z9 : 6"89 x 10-1Z cm2 s'l 

0 2  
(10) 

x /  
Trivial checks on the final form of M, are in order. What o. i 
we obtain from this equation are some interesting limits. 

For  t ~ 0  the limit Mt/M ~ = v / ~ / S x / ~  is obtained, and ~-.l~ 8 , I 

its dependence on ~ is in accord with previous results b u/k = 4 . 9 7  x 10"6s - I 
where diffusion mainly without stirring has been studied. 
What we notice is that this limit is independent of u o.3 

which means that MJM~o increases with x / / ~  in the small o. 2 x 
time limit regardless of whether stirring is included or × / -  
not. For  larger times the two cases differentiate and two o. M -. ~ -  
different limits are obtained as t--.oo depending on . > - - -  
whether we have stirring or not. Without stirring t I 
MJM~o--*I/2 meaning that the free diffusion keeps on i z 3 
average half of the molecules in the negative region z < 0. t x Io -5 (s) 
For u > 0 the limit Mt/M ~ goes to 1 expressing the fact Figure 2 Least square fitting curves: (a) without stirring, equation 
that all mass under organized motion finally ends at the (lla); (b) with stirring, equation (10), at 22°C 
positive subspace z>0 .  Graphs based on equation (10) 
and without stirring are shown in Figures 1-3. a D = M. 44 x I o- ~j ernZ s't 

From the general expression of equation (10) describing 02 
both diffusion and stirring, the two separate phenomena 
of pure diffusion (u =0) and pure stirring (D = 0) can be 
studied: o. I 

1 e r r / 2 - - ~ + ~ - t ~ l - - e x p ( - - 2 2 ~ ]  " 8 , t , 

i 

1 

Mt/M°°-2 2 \ 2 ~ D ~ , /  2~/=L \ 4Dt/d ~l~ b u/~.=6.91xl0-6s -I 

pure di f fusion ( u = 0 )  ( l l a )  o.3 x ~ - ~ ~ x  

MJM~=ut/2 for t<2/u pure stirring (D=0) 
=1 for t>2/u ( l lb)  o z 

These equations are plotted in Figure 4. Notice that when o. t 
stirring is dominant a linear dependence of M t on t is 
taken in accordance with previous results 3x. In the case ~ ~ 
of pure diffusion, equation (lla),  in the limit of small I t x to-5(s) e 3 
times Mt/M= depends on x / ~  and goes as that out of Figure 3 Least square fitting curves: (a) without stirring, equation 
a slab 47-5°. The dependence of M t on 2, determined to (lla); (b) with stirring, equation (10), at 30°C 
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Table l Experimental values of Mt/M ~ at various time intervals 
1.0 without and with stirring 

M,/M 

Without  stirring With stirring 
~ [~8  t x l 0  -5 

0.5 (s) 6°C 22°C 30°C 6~C 22c~C 30°C 
A 

0.216 0.018 0.032 0.078 0.078 0.093 0.086 
0.648 0.063 0.071 0.143 0.142 0.150 0.174 
1.080 0.111 0.138 0.202 0.182 0.203 0.279 
1.800 0.118 0.163 0.219 0.203 0.217 0.291 

I I I 2.700 0.130 0.191 0.221 0.204 0.218 0.296 
/ 

Figure 4 From the general solution of equation (10), the two separate 
phenomena of pure diffusion and pure stirring can be described: (A) 
pure diffusion (u =0), equation (1 la); (B) pure stirring (D =0), equation (l lb) taken from equation (1 la). All these least square curves 

are shown in Figures 1 3; the values of D found after 
multiplying D/22 by 22 (2= 1.27 × 10 -3 cm) are shown in 

, the figures. It is seen that all these single parameter graphs 
o.6 fit well with the experimental results. The dependence of 

D on temperature is an increasing function of temperature 
in accordance with previous results 53. The values of D 

. . ~  of the present work lying in the range between 
10 -11 cm s -2 and 10 -12 cm s -2 are generally smaller 
than those of previous references 43'44'53'54 and this is 

o.z due to the presence of the oil solvent being more viscous 
than the solvents used in those studies. From the 

I J experimental pairs (Mt/M~, t) with stirring and knowing 
I y z the diffusion parameters D/2 z the stirring parameters u/2 

Figure 5 Dependence of mass transfer on the reduced parameter y can also be determined by means of equation (10) which 
thus remains to include only the parameter u/L By means 
again of the condition of minimization of the sum of the 

be linear initially and ending with a plateau 51'52, is also squares of the differences between the experimental and 
given by equation (lla). If we substitute M~ =CS2 theoretical values of M~/M~ the parameter u/2 can be 
in equation (lla),  where C is the total available determined for each temperature. The three different 
concentration of the diffusants in the initial sample and theoretical curves for the three different temperatures are 
S the total surface of escape, we obtain: shown in Figures lb, 2b and 3b; the values for u/2 are 

shown in the figures. Though this choice of theoretical 
CS /~2~ =y 1 - e r f ( y ) + - - [ 1 - e x p ( - y 2 ) ]  (12) curves is not unique, the fact that the sum of the 

yx /~  squares of the differences between the experimental and 
theoretical values is a minimum keeps the shapes of the 

where y = ) . / 2 x / ~  is a reduced variable. The plot of this theoretical curves the closest possible to the shapes 
function is shown in Figure 5 and is of the same form as of hypothetical experimental curves which join the 
that of previous studies 51'52 experimental points. Again a good fitting is taken between 

theory and experiments providing a measure of the mass 
transfer velocity of the order of u ~  10 -8 cm s-1. 

CO MP AR IS ON OF T H E O R E T I C A L  RESULTS 
WITH THOSE OBTAINED EXPERIMENTALLY CONCLUSIONS 
BY GAS C H R O M A T O G R A P H Y  

A theoretical equation of the probability of a migrant to 
Equation (10)is a general expression describing the mass travel in time t between two points in space with and 
Mt transferred into solution as a function of time t, the without stirring is determined and used to find the 
stirring velocity u, the diffusion coefficient D and the amount M t of low molecular weight compounds which 
sample width 2. The last three parameters appear in the pass from a polymer matrix into a solution as a function 
two combinations D/22 and u/2. Experiments have been of the time t. 
carried out by measuring M t of the dioctylphthalate The function M,/M~ depends on two parameters; the 
plasticizer from a poly(vinyl chloride) matrix into an oil diffusion parameter D/22 and the stirring parameter 
solvent as a function of time t, with and without stirring, u/2. For short times, M~/M~ goes as ~ - t  with 
Gas chromatography measurements were carried out at or without stirring and when stirring is dominant a linear 
three different temperatures (6, 22 and 30°C) and Table dependence of MJM~ on ut is taken. Without stirring, 
1 shows the results obtained with stirring (u>0)  and half of the available quantity of migrants diffuses in the 
without stirring (u=0). Equation ( l la)  depends on the 
single parameter D/22 and can be employed for the positive solution region yielding the limit MJM~= 1/2 
determination of the value of this parameter for each , ~  

while under stirring all of the available migrants end in temperature. The condition we choose for this purpose 
is the minimization of the sum of the squares of the solution so that the limit M,/M~ goes to 1. 
differences of the experimental values of MjM~ and those ,-~ 
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